Publications

2023

1. Knupp, J., Pletan, M., Arvan, P., and Tsai, B. (2023) Autophagy of the ER: the secretome finds

lysosome. The FEBS Journal fbes.16986. 

 

2. Pletan, M., Liu, X., Cha, G., Chen, Y-J., Knupp, J., and Tsai, B. (2023) The Atlastin ER morphogenic

proteins promote formation of a membrane-penetration site during non- enveloped virus entry.

Journal of Virology e.00756-23.

 

3. Woo, T., Williams, J.M., and Tsai, B*. (2023) How host ER membrane chaperones and

morphogenic proteins support virus infection. Journal of Cell Science 13, jcs261121.

 

4. Williams, J.M., Chen, Y-J*, Cho, W-J, Tai, A.W., and Tsai, B*. (2023) Reticulons promote

formation of ER-derived double-membrane vesicles that facilitate SARS-CoV-2 replication.

Journal of Cell Biology 7, e202203060.

*co-corresponding authors

 

5. Harwood, M.C.*, Woo, T.*, Takeo, Y., Dimaio, D., and Tsai, B. (2023) HPV is a cargo for the

COPI sorting complex during virus entry. Science Advances 9, e101126.

* co-corresponding authors

 

2022  

1. Pletan, M.L., and Tsai, B. (2022) Non-enveloped virus membrane penetration:

New Advances leading to new insights. PLoS Pathogens 18, e1010948.

 

2. Spriggs, C.C.*, Cha, G., Li, J., and Tsai, B.* (2022)

Components of the LINC and NPC Complexes coordinately target and translocate a virus

into the nucleus to promote infection. PLoS Pathogens 18, e1010824.

* co-corresponding authors 

 

3.  Bagchi, P*., Speckhart, K*., Kennedy, A., Tai, A.W., and Tsai, B. (2022)

A specific EMC subunit supports Dengue virus infection by promoting

virus membrane fusion essential for cytosolic genome delivery. PLoS Pathogens 18, e1010717.

* equal contribution

 

2021 

1. Chen, Y-J*., Knupp, J*., Arunagiri, A., Haataja, L., Arvan, P., and Tsai, B. (2021) 

PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of 

mutant prohormones. Nature Communications 12, 5991. 

* equal contribution  

 

2. Bagchi, P*., Liu, X*., Cho, W.J., and Tsai, B. (2021). Lunapark-dependent formation 

of a virus-induced ER exit site contains multi-tubular ER junctions that promote viral 

ER-to-cytosol escape. Cell Reports 37, 110077. 

* equal contribution 

 

3. Haataja, L., Arunagiri, A., Hassan, A., Regan, K., Tsai, B., Weiss, M.A., Liu, M., and 

Arvan, P. (2021). Distinct states of proinsulin misfolding in MIDY. Cellular and 

Molecular Life Sciences 78, 6017-6031. 

 

4. Liu, M., Huang, Y., Xu, X., Li, X., Alam, M., Arunagiri, A., Haataja, L., Ding, L., 

Wang, S., Itkin-Ansari, P., Kaufman, R.J., Tsai, B., Qi, L., and Arvan, P. (2021).

Normal and defective pathways in biogenesis and maintenance of the insulin 

storage pool. J. Clin Invest. 131, e142240. 

 

5. Speckhart, K*., Williams, J.M*., and Tsai, B. (2021). How DNA and RNA viruses 

exploit host chaperones to promote infection. Viruses 13, 958. 

* equal contribution 

 

6. Knupp, J., Chen, Y-J., Arunagiri, A., Haataja, L., Arvan, P., and Tsai, B. (2021). 

The ER transmembrane protein PGRMC1 recruits misfolded proteins for 

reticulophagic clearance. Autophagy (in press) 

 

2020 

1. Chen, Y-J., Williams, J. M., Arvan, P., and Tsai, B. (2020). Reticulon protects the 

integrity of the ER membrane during ER escape of large macromolecular protein 

complexes. J. Cell Biology 219, pii: e201908182. 

Highlighted in Faculty1000 Prime, 18 Feb 2020; 10.3410/f.737158688.793570877 

Highlighted in Science, (2020), 367, 996. 

 

2. Bagchi, P., Torres, M., Qi, L., and Tsai, B. (2020). Selective EMC subunits act as 

molecular tethers of intracellular organelles exploited during viral entry. Nature 

Communications 11, 1127. 

 

3. Spriggs, C.C., Badieyan, S., Verhey, K.J., Cianfrocco, M.A., and Tsai, B. (2020). 

Golgi-associated BICD adaptors couple ER membrane penetration and disassembly 

of a viral cargo. J. Cell Biology 219, pii: e201908099 

 

4. Harwood, M.C*., Dupzyk, A*., Inoue, T., DiMaio, D., and Tsai, B. (2020). p120 

catenin recruits HPV to g-secretase to promote virus infection. PLoS Pathogens

16, e1008946. 

* equal contribution 

 

5. Liu, X., and Tsai, B. (2020). Ubqln4 facilitates ER-to-cytosol escape of a 

nonenveloped virus during infection. J. Virology pii: e00103-20. 

Selected for inclusion in Spotlight

 

6. Chen, Y-J*., Bagchi, P*., and Tsai, B. (2020). ER functions are exploited by viruses 

to support distinct stages of their life cycle. Biochemical Society Transactions 48, 

2173-2184. 

* equal contribution 

 

2019 

1. Cunningham, C.N., Williams, J.M., Knoop, J., Arunagiri, A., Arvan, P., and Tsai, B. 

(2019). Cells deploy a two-pronged strategy to rectify misfolded proinsulin aggregates.

Molecular Cell 75, 442-456. 

Highlighted as a preview in Molecular Cell, 75, 416-416. 

 

2. Lin, D.L*., Inoue, T.*, Chen, Y-J*., Chang, A, Tsai, B*, and Tai, A.W.* (2019). The ER 

Membrane Protein Complex promotes biogenesis of dengue and Zika virus non- 

structural multi-pass transmembrane proteins to support virus infection. Cell 

Reports, 27, 1666-1674. *co-corresponding author 

* equal contribution 

 

3. Arunagiri, A., Haataja, L., Pottekat, A., Pamenan, F., Kim, S., Zeltser, L.M., Paton, 

A.W., Paton, J.C., Tsai, B, Itkin-Ansari, P., Kaufman, R.J., Liu, M., and Arvan, P. 

(2019). Proinsulin misfolding is an early event in progression to Type 2 diabetes. 

eLife, pii: e44532. 

 

4. Spriggs, C.C*., Harwood, M.C*., and Tsai, B. (2019). How non-enveloped viruses 

hijack host machineries to cause infection. Advances in Virus Research. 104, 97- 

122. 

* equal contribution 

 

5. Chen, Y-J., Liu, X., and Tsai, B. (2019). SV40 hijacks cellular transport, membrane 

penetration, and disassembly machineries to promote infection. Viruses 11, 917. 

 

2018 

1. Ravindran, M.S*., Spriggs, C.C*., Verhey, K.J., and Tsai, B. (2018). Dynein engages 

and disassembles cytosol-localized SV40 to promote infection. J. Virology 92, 

pii: e00353-18. 

Selected for inclusion in Spotlight

* equal contribution 

 

2. Dupzyk, A., and Tsai, B. (2018). Bag2 is a component of a cytosolic extraction 

machinery that promotes membrane penetration of a nonenveloped virus. J. 

Virology 92, pii: e00607-18. 

 

3. Inoue, T., Zhang, P., Zhang, W., Goodner-Bingham, K., Dupzyk, A., DiMaio, D., 

Tsai, B. (2018). g-secretase promotes membrane insertion of the human 

papillomavirus L2 capsid protein during virus infection. J. Cell Biology, 217, 3545- 

3559. 

 

4. Arunagiri, A., Haataja, J., Cunningham, C.N., Shrestha, N., Tsai, B., Qi, L., Liu, M., 

and Arvan, P. (2018). Misfolded Proinsulin in the Endoplasmic Reticulum During 

Development of Beta Cell Failure in Diabetes. Annals of the New York Academy 

of Sciences 1418, 5-19. 

 

2017 

1. Cunningham, C.N*., He, K*., Arunagiri, A., Paton, A.W., Paton, J.C., Arvan, P., and 

Tsai, B. (2017). Chaperone-driven degradation of a misfolded proinsulin mutant in 

parallel with restoration of wild type insulin secretion. Diabetes 66: 741-753. 

Highlighted in Science Translational Medicine (2017), 9, pii: eaal4995 

* equal contribution 

 

2. Ravindran, M.S., Engelke, M.F., Verhey, K.J., and Tsai, B. (2017). Exploiting the 

kinesin-1 molecular motor to generate a virus membrane penetration site. Nature 

Communications 8, 15496. 

 

3. Dupzyk, A., Williams, J.M., Bagchi, P., Inoue, T., and Tsai, B. (2017). SGTA- 

dependent regulation of Hsc70 promotes cytosol entry of SV40 from the ER. J. 

Virology 91, pii: e00232-17. 

Selected for inclusion in Spotlight

 

4. Inoue, T., and Tsai, B. (2017). Regulated Erlin-dependent release of the B12 

transmembrane J-protein promotes ER membrane penetration of a non-enveloped 

virus. PLoS Pathogens 13, e1006439. 

 

5. Qi, L., Tsai, B., and Arvan, P. (2017). New insights into the physiological role of 

ERAD. Trends in Cell Biology pii, S0962-8924, 30213-30216. 

 

2016 

1. Haataja, L., Manickam, N., Soliman, A., Tsai, B., Liu, M., and Arvan, P. (2016). 

Disulfide mispairing during proinsulin folding in the endoplasmic reticulum. Diabetes 

65, 1050-1060. 

 

2. Inoue, T. and Tsai, B. (2016). The Grp170 nucleotide exchange factor executes a 

key role during ERAD of cellular misfolded clients. Mol. Biol. Cell 27, 1650-1661. 

 

3. Bagchi, P., Inoue, T., and Tsai, B. (2016). EMC1-dependent stabilization drives 

membrane penetration of a partially destabilized non-enveloped virus. eLife pii: 

e21470. 

 

4. Ravindran, M.S., and Tsai, B. (2016). Viruses utilize cellular cues in distinct 

combination to undergo systematic priming and uncoating. PLoS Pathogens 12, 

e1005467. (Correction: Viruses utilize cellular cues in distinct combination to 

undergo systematic priming and uncoating. PLoS Pathogens 12, e1005712.) 

 

5. Williams, J.M., and Tsai, B. (2016). Intracellular trafficking of bacterial toxins. Curr. 

Opin. Cell Biology 41, 51-56. 

 

6. Ravindran, M.S., Bagchi, P., Cunningham, C., and Tsai, B. (2016). Opportunistic 

Intruders: Viruses orchestrate the ER function to cause infection. Nat. Rev. Micro. 

14, 407-420. (featured as “cover article”) 

 

7. Dupzyk, A., and Tsai, B. (2016). How polyomaviruses exploit the ERAD machinery 

to cause infection. Viruses 8, 242. 

 

2015 

1. Bagchi, P., Walczak, C.P., and Tsai, B. (2015). The ER membrane J protein C18 

executes a distinct role in promoting SV40 membrane penetration. J. Virology 89, 

4058-4068. 

 

2. Inoue, T., and Tsai, B. (2015). A nucleotide exchange factor promotes ER-to-cytosol 

membrane penetration of the non-enveloped virus SV40. J. Virology 89, 4069-4079. 

Selected for inclusion in Spotlight. 

 

3. Williams, J.M., Inoue, T., Chen, G., and Tsai, B. (2015). The nucleotide exchange 

factors Grp170 and Sil1 induce cholera toxin release from BiP to enable retro- 

translocation. Mol. Biol. Cell 26, 2181-2189. 

 

4. Inoue, T., Dosey, A., Herbstman, J.F., Ravindran, M.S., Skiniotis, G., and Tsai, B. 

(2015). The ERdj5 reductase cooperates with PDI to promote SV40 ER membrane 

translocation. J. Virology 89, 8897-8908. 

 

5. Ravindran, M.S., Bagchi, P., Inoue, T., and Tsai, B. (2015). A non-enveloped virus 

hijacks host disaggregation machinery to translocate across the endoplasmic 

reticulum membrane. PLoS Pathogens 11, e1005086. 

Highlighted in Nature Chemical Biology (2015), 11, 755. 

 

6. He, K., Cunningham, C., Manickam, N., Liu, M., Arvan, P., and Tsai, B. (2015). PDI 

reductase acts on Akita mutant proinulin to initiate retro-translocation along the 

Hrd1/Se11L-p97 axis. Mol. Biol. Cell 26, 3413-3423.

  

7. Sun, S., Shi, G., Sha, H., Ji, Y., Han, X., Shu, X., Ma, H., Inoue, T., Gao, B., Kim, 

H., Bu, P., Guber, R.D., Shen, X., Lee, AH., Iwawaki, T., Paton, A.W., Paton, J.C., 

Fang, D., Tsai, B., Yates, J.R. III, Wu, H., Kersten, S., Long, Q., Duhamel, G.E., 

Simpson, K.W., and Qi, L. (2015). IRE1α is an endogenous substrate of 

endoplasmic reticulum-associated degradation. Nature Cell Biol. 17, 1546-1555. 

 

8. He, K., Ravindran, M.S., and Tsai, B. (2015). A bacterial toxin and a non-enveloped 

virus hijack ER-to-cytosol membrane translocation pathways to cause disease. Crit. 

Rev. Biochem. Mol. Biol. 11: 1-12. 

 

2014 

1. Walczak, C.P., Ravindran, M.S., Inoue, T., and Tsai, B. (2014). A cytosolic 

chaperone complexes with dynamic membrane J-proteins and mobilizes a 

nonenveloped virus out of the endoplasmic reticulum. PLoS Pathogens 10, 

e1004007. 

 

2013 

1. Williams, J.M., Inoue, T., Banks, L, and Tsai, B. (2013). The ERdj5-Sel1L complex 

facilitates cholera toxin retro-translocation. Mol. Biol. Cell 24, 785-795. 

 

2. Moore, P., He, K., and Tsai, B. (2013). Establishment of an in vitro transport assay 

that reveals mechanistic differences in cytosolic events controlling cholera toxin and 

TCRa retro-translocation. PLoS One 8, e75801. 

 

3. Bernardi, K.M., Williams, J.M., Inoue, T., Schultz, A., and Tsai, B. (2013). A 

deubiquitinase negatively regulates retro-translocation of non-ubiquitinated 

substrates Mol. Biol. Cell 24, 3545-3556. 

 

4. Inoue, T. and Tsai, B. (2013). How viruses use the endoplasmic reticulum for entry, 

replication, and assembly. Cold Spring Harb. Perspect. Biol. 5, pii: a013250. 

 

2012 

1. Walczak, C.P., Bernardi, K., and Tsai, B. (2012). Endoplasmic reticulum-dependent 

redox reactions control ER-associated degradation and pathogen entry. 

Antioxidants Redox Signaling 16:809-818. 

 

2011 

1. Walczak, C.P. and Tsai, B. (2011). A PDI family network acts distinctly and 

coordinately with ERp29 to facilitate polyomavirus infection J. Virology 85, 2386- 

2396. 

 

2. Inoue, T., and Tsai, B. (2011). A large and intact viral particle penetrates the 

endoplasmic reticulum membrane to reach the cytosol. PLoS Pathogens 7, 

e1002037. 

 

3. Goodwin, E., Lipovsky, A., Inoue, T., Magaldi, T., Edwards, A.P.B., Yates, K.E., 

Paton, A.W., Paton, J.C., Atwood, W., Tsai, B., and DiMaio, D. (2011). BiP and 

multiple DNA J molecular chaperones in the endoplasmic reticulum are required for 

efficient SV40 infection. mBio 2, e00101-11. 

 

4. Inoue, T., Moore, P., and Tsai, B. (2011). How viruses and toxins disassemble to 

enter cells. Annu. Rev. Microbiology 65: 287-305. 

 

2010 

1. Bernardi, K.M., Williams, J.M., Kikkert, M., van Voorden, S., Wiertz, E.J., Ye, Y., and

Tsai, B. (2010). The E3 ubiquitin ligases Hrd1 and gp78 bind to and promote cholera

toxin retro-translocation. Mol. Biol. Cell 21, 140-151. 

 

2. Moore, P., Bernardi, K.M., and Tsai, B. (2010). The Ero1a-PDI redox cycle 

regulates retro-translocation of cholera toxin. Mol. Biol. Cell 21, 1305-1313. 

 

3. Qian, M. and Tsai, B. (2010). Lipids and proteins act in opposing manners to 

regulate polyomavirus infection. J. Virology 84, 9840-9852. 

 

4. Tsai, B., and Qian, MD. (2010). Cellular entry of polyomaviruses. Curr. Topics 

Micro. & Immuno. 343:177-194. 

 

2009 

1. Rainey-Barger, E.K., Mkrchian, S., and Tsai, B. (2009). The C-terminal domain of 

ERp29 mediates polyomavirus binding, unfolding, and infection. J. Virology 83, 

1483-1491. 

 

2. Jiang, M., Abend, J.R., Tsai, B., and Imperiale, M.J. (2009). Early events during BK 

virus entry and disassembly. J. Virology 83, 1350-1358. 

 

3. Forster, L.M., Mahn, J., and Tsai, B. (2009). Generating an unfoldase from 

thioredoxin-like domains. J. Biol. Chem. 284, 13045-13056. 

 

4. Qian, M., Cai, D., Verhey, K.J., and Tsai, B. (2009). A lipid receptor sorts 

polyomavirus from the endolysosome to the endoplasmic reticulum to cause 

infection. PLoS Pathogens. 5, e1000465.

  

5. Erickson, K.D., Garcea, R.L., and Tsai, B. (2009). Ganglioside GT1b is a putative 

host cell receptor for the Merkel cell polyomavirus. J. Virology 83, 10275-10279. 

 

2008 

1. Lam, A.D., Tryoen-Toth, P., Tsai, B., Vitale, N., and Stuenkel, E.L. (2008). SNARE- 

catalyzed fusion events are regulated by syntaxin1A-lipid interactions. Mol. Biol. 

Cell 19, 485-497. 

 

2. Bernardi, K.M., Forster, M.L., Lencer, W.I. and Tsai, B. (2008). Derlin-1 facilitates 

the retro-translocation of cholera toxin. Mol. Biol. Cell 19, 877-884. 

 

2007 

1. Rainey-Barger, E.K., Mkrtchian, S., and Tsai, B. (2007). Dimerization of ERp29, a 

PDI-like protein, is essential for its diverse functions. Mol. Biol. Cell 18, 1253-1260. 

 

2. Rainey-Barger, E.K., Magnuson, B., and Tsai, B. (2007). A chaperone-activated 

non-enveloped virus perforates the physiologically relevant ER membrane. J. 

Virology 81, 12996-13004. 

 

3. Tsai, B. (2007). Penetration of non-enveloped viruses into the cytoplasm. Annu. 

Rev. Cell Dev. Biology 23, 23-43. 

 

2006 

1. Low, J.A., Magnuson, B., Tsai, B., and Imperiale, M. J. (2006). Identification of 

gangliosides GD1b and GT1b as receptors for BK virus. J. Virology 80, 1361- 

1366. 

Selected for inclusion in Spotlight. 

 

2. Forster, L.M., Sivick, K., Park, Y-N., Arvan, P., Lencer, W., and Tsai, B. (2006). 

Protein disulfide isomerase-like proteins play opposing roles during retro- 

translocation. J. Cell Biology 173, 253-259. 

Highlighted in Science (2006), 313, pp19. 

 

2005 

1. Magnuson, B., Rainey, E.K., Benjamin, T., Baryshev,, M., Mkrtchian,, S., and Tsai, 

B. (2005). ERp29 triggers a conformational change in polyomavirus to stimulate 

membrane binding. Mol. Cell 20, 289-300. 

 

2003 

1. Fujinaga, Y., Wolf, A.A., Rodighiero, C., Wheeler, H., Tsai, B., Allen, L., Jobling, J., 

Rapoport, T., Holmes, R.K., and Lencer, W.I. (2003). Gangliosides that associate 

with lipid rafts mediate transport of cholera toxin from the plasma membrane to the 

ER. Mol. Biol. Cell. 14, 4783-4793. 

 

2. Tsai, B., Gilbert, J.M., Stehle, T., Lencer, W.I., Benjamin, T.L., and Rapoport, T.A. 

(2003). Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 

22, 4346-4355. 

 

3. Lencer, W.I and Tsai, B. (2003). The intracellular voyage of cholera toxin: going 

retro. Trends Biochem. Sci. 28, 639-645. 

 

2002 

1. Rodighiero, C., Tsai, B., Rapoport, T.A., and Lencer, W.I. (2002). The role of poly- 

ubiquitination in retro-translocation of cholera toxin and its escape of cytosolic 

degradation. EMBO Reports, 3, 1222-1227. 

 

2. Tsai, B., and Rapoport, T.A. (2002). Unfolded cholera toxin is transferred to the ER 

membrane and released from protein disulfide isomerase upon oxidation by Ero1. J. 

Cell Biology 159, 207-215. 

 

3. Tsai, B., Ye, Y., and Rapoport, T.A. (2002). Retro-translocation of proteins from the 

endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell Biology 3, 246-255 

 

2001 

1. Tsai, B., Rodighiero, C., Lencer, W.I., and Rapoport, T.A. (2001). Protein disulfide 

isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104, 

937-948. 

Highlighted in Nature Rev. Mol. Cell Biology (2001), 2, 321; 

Highlighted in Science (2001), 292, 5514; 

Highlighted in Current Opinion in Cell Biology (2001), 13, 381.